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ABSTRACT

Multi-modal music classification creates supervised mod-

els trained on features from different sources (modalities):

the audio signal, the score, lyrics, album covers, expert

tags, etc. A concept of “multi-group feature importance”

not only helps to measure the individual relevance of fea-

tures of a feature type under investigation (such as the in-

struments present in a piece), but also serves to quantify

the potential for further improving classification by adding

features from other feature types or extracted from dif-

ferent kinds of sources, based on a multi-objective anal-

ysis of feature sets after evolutionary feature selection. In

this study, we investigate the stability of feature group im-

portance when different classification methods and differ-

ent measures of classification quality are applied. Since

musical scores are particularly helpful in deriving seman-

tically meaningful, robust genre characteristics, we fo-

cus on the feature groups analyzed by the jSymbolic fea-

ture extraction software, which describe properties asso-

ciated with instrumentation, basic pitch statistics, melody,

chords, tempo, and other rhythmic aspects. These sym-

bolic features are analyzed in the context of musical infor-

mation drawn from five other modalities, and experiments

are conducted involving two datasets, one small and one

large. The results show that, although some feature groups

can remain similarly important compared to others, differ-

ences can also be evident in various applications, and can

depend on the particular classifier and evaluation measure

being used. Insights drawn from this type of analysis can

potentially be helpful in effectively matching specific fea-

tures or feature groups to particular classifiers and evalua-

tion measures in future feature-based MIR research.

1. INTRODUCTION AND RELATED WORK

There are music research scenarios where manually de-

signed features can have value, and where gaining under-

standing of which features are particularly effective for

various classification tasks can be of central importance.
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Researchers seeking to gain domain knowledge can be in-

terested in more than just optimizing performance. Those

working on composer attribution or genre classification,

for example, might be interested in learning about the spe-

cific qualities that delineate musical style, so comparing

the performance of different musically meaningful features

can provide important insight. There can also be situations

where only very limited training data are available, such as

when there is only so much extant music by a given com-

poser, and where data augmentation techniques can only

improve matters so much. In such situations, deep learning

that self-learns features can be less useful, and handmade

features become valuable, as do approaches for selecting

more promising features when many are available.

Multi-modal features drawn from a variety of data

sources can be of particular interest. Although there can

be redundancy across types of musical data (e.g., both au-

dio and symbolic data specify pitch), such information is

not always equally accessible (e.g., pitch is harder to ex-

tract from dense polyphonic audio), and there are other

times when different source types contain complementary

information (e.g., album art can provide cultural informa-

tion that is inaccessible from audio or scores). Multi-

modal research often plays an essential role in musicol-

ogy, and involving sources as diverse as concert programs,

manuscript illuminations, critical accounts, contemporary

visual portrayals, and scores themselves. MIR research can

and has similarly taken advantage of multi-modal infor-

mation, both for improving performance in an engineer-

ing sense and in learning more about the connections be-

tween different types of musical data in a scientific or mu-

sicological sense. There is a rich MIR literature involving

two modalities, but relatively few studies have considered

more [1–6], and relatively few multi-modal public datasets

are available (standouts are described in [5, 7–10]). There

are also several papers that provide useful summaries of

multi-modal MIR research [11–14].

Of course, with more types of data come more features,

and the curse of dimensionality becomes a concern. Al-

though handmade features can help, since they tend to

represent information more concisely than raw data, too

many can still present problems when training data are

limited. Although there is substantial literature on dimen-

sionality reduction (e.g., [15]), and important related MIR

studies [4, 16–23], some approaches sacrifice feature inde-

pendence (e.g., PCA), which compromises interpretability,
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and feature selection approaches can be sensitive to partic-

ular classifier and evaluation methodologies.

So, it can be of value to get a sense of how consis-

tently features perform across different classification and

evaluation methodologies, in order to gain a deeper musi-

cal understanding of which features and groups of features

are most important in delineating classes of interest. This

paper is concerned with exactly this: attempting to mea-

sure the stability in importance of various features for a

given music classification task, which can ultimately help

to avoid overfitting the choice of features (or modalities),

and can provide insights into underlying musical meaning.

We focus here on symbolic features, as they tend to

be particularly interpretable, especially when collaborating

with musicologists or theorists. This research maintains

a fundamentally multi-modal character, as it also uses in-

formation from five other source types to ground feature

stability measurements in a broader context: we used the

same audio, album cover image, playlist co-occurrence, se-

mantic tag, and lyric text feature data as [10]. These data

are particularly useful because they include both a small

but clean dataset and a large but noisy dataset, permitting

stability to be measured in both scenarios. All symbolic

features were extracted with jSymbolic [24], which pro-

vides access to many features usefully grouped into feature

types whose relative stability can be compared.

We selected genre classification as the test domain for

this research, but there is nothing about the techniques we

propose that is specific to genre. Furthermore, the same

techniques could just as easily be refocused on modalities

other than symbolic music. It is also important to note that

there are fundamental concerns related to the evaluation

of musical classification [25–28]; although there is insuffi-

cient space to detail these here, this is essential reading for

MIR researchers working in classification.

2. MULTI-GROUP FEATURE IMPORTANCE

We have proposed the concept of multi-group feature im-

portance in [10], as an extension of earlier work [29–31].

A feature selection scenario based on two objectives was

constructed, with the goal of simultaneously minimizing

balanced relative error mBRE (defined as a mean of rel-

ative errors for positive and negative instances) and maxi-

mizing the share of features gi belonging to a given group i

under investigation, such as rhythmic descriptors. This ap-

proach makes it possible to answer not only the questions

“what is the lowest error rate achieved by rhythmic features

in predicting a musical category?” and “which are the best

rhythmic features for the current prediction task?”, but also

“how can performance be improved when features of other

groups, domains, or modalities are also introduced?”

While the formal details of “importance” and the math-

ematical backing of multi-objective optimization are left

to [10], we will briefly illustrate the core ideas here with

the help of Figure 1. The connected circles in Subfigure (a)

show a non-dominated front after feature selection, which

simultaneously maximizes the share of rhythmic features

gRHY THM and minimizes mBRE , when features from all

six modalities are considered (i.e. not just other symbolic

features). Each circle corresponds to a feature set that is

not dominated by any other feature set. This means that

no other feature sets have been identified after feature se-

lection that are “better” than the one under consideration,

in combined terms of the two measures being optimized

(i.e., using a greater share of rhythmic descriptors and

achieving smaller classification error at the same time).

For instance, the feature set in the upper right corner con-

tains only rhythmic descriptors (gRHY THM = 1.0), but

mBRE = 0.4236 is rather high. No other feature sets that

contain only rhythmic descriptors have lower errors, mean-

ing that they are dominated by the upper right corner set,

and are not shown in the plot. The feature set in the bottom

left corner has the smallest mBRE = 0.0139, but has only

37.86% rhythmic descriptors. Other circled feature sets

between these corner solutions consist of various trade-offs

between the two measures, and are also not dominated by

any other found feature sets. The non-dominated fronts in

the figures are constructed after ten feature selection repe-

titions and an independent evaluation on the reserved test

set created with music tracks used neither for training the

models nor for evaluating the selected feature sets.

Subfigure (a) indicates that rhythmic descriptors do not

perform well for Traditional Blues music. This is not only

because the error is high in general (this can occur, for ex-

ample, if a category is too hard to predict or is badly de-

fined), but also because the error is substantially reduced

if other features (e.g., audio features) are allowed to con-

tribute to the feature sets used to train the classification

models. So, the overall multi-group feature importance of

rhythmic descriptors is low, which is indicated graphically

by the large area shaded grey on the graph. As the num-

ber of all possible non-empty feature sets is typically very

high (2N − 1 for N features), an evolutionary algorithm is

proposed in [10] to explore many different combinations

of features in a non-deterministic way, guided by a pro-

cess inspired by natural evolution, where feature sets can

be randomly changed by mutation that switches feature di-

mensions on or off. Only fitter feature sets survive after

an exit condition is fulfilled, such as a cap on the overall

number of mutations.

In [10], we have also investigated the importances of

different modalities and proposed the complementary con-

cept of multi-group feature redundancy. However, de-

spite a large number of experiments, the results should

be treated with caution because of two limitations of the

study: only random forest classifiers were used and bal-

anced relative error was the only measure of classification

quality. It was therefore unclear whether estimated impor-

tances would remain similar if other classification meth-

ods were applied or other evaluation measures used. The

present study addresses both of these gaps, by investigat-

ing how stable multi-group feature performance is when

classification method or evaluation measure are varied.
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Figure 1. Non-dominated fronts after multi-objective feature selection for the identification of Traditional Blues in the

SLAC dataset [2], with rhythmic descriptors the feature group being focused on. Top row: the share of rhythmic descriptors

gRHY THM is maximized and the balanced relative error mBRE is minimized using random forest (a), k-nearest neighbors

(b), or support vector machine (c) classifiers. Bottom row: random forest classifiers are used to maximize both gRHY THM

and recall mREC (d), specificity mSPEC (e), or F1-measure mF1 (f).

3. DESIGN OF EXPERIMENTS

We conducted our experiments on two pre-existing

datasets, namely LMD-aligned [32] and SLAC [2], involv-

ing a total of 20 genres and sub-genres. While LMD-

aligned is a larger dataset, it has problems with noisiness

and structure (e.g., it is unbalanced, with an overly large

representation of Pop/Rock songs). SLAC is smaller but

carefully designed with, for example, an equal number of

pieces belonging to each genre, each of which can be bro-

ken into two equally represented sub-genres. We made use

of multi-modal features extracted from 1,575 Lakh and 250

SLAC tracks, which have been made publicly available. 1

Table 1 shows sample jSymbolic features, divided into

feature groups; the full list of symbolic (and other) features

is available online. 2 We excluded the dynamics features

used in [10], as dynamics are often inconsistently encoded.

In the first part of this study we measure the impor-

tance of eight groups of symbolic features (relative to fea-

tures from all six modalities considered) not only with

the random forests (RF) classifiers used in [10], but also

with k-nearest neighbor (kNN) and support vector machine

(SVM) classifiers. As can be observed in Figure 1, subfig-

ures (a)-(c), notable differences in importance can be evi-

dent when the classification method is changed. Of course,

a limitation of this study is that all classifiers are applied

with default hyperparameters in the AMUSE framework

1 https://zenodo.org/record/5651429
2 https://doi.org/10.5334/tismir.67.s1

[33]: 100 trees for RF, k = 1 for kNN and a linear ker-

nel for SVM. In practice, varying hyperparameters may

well also introduce meaningful variance in measured fea-

ture importances.

We chose to omit deep neural networks from our exper-

iments, despite their popularity in MIR, for two reasons.

First, they typically learn their own features, which can

make it difficult to analyze the relative relevance of inter-

pretable semantic descriptors for a given musical category.

Second, the typically very large number of parameters they

involve can lead to overfitting in situations with limited

available data, such as when a musical category is defined

by a small number of “positive” and “negative” tracks, as

in real-world situations where a listener may wish to pro-

vide only a few labeled examples to train a supervised clas-

sification model.

In the second part of this study we vary the evaluation

measures used in the two-objective feature selection. Al-

though mBRE is generally a good choice for binary classi-

fication tasks, as it can help to measure performance with

unbalanced test sets [34, p.344], it is not often used in

MIR classification studies. We have therefore extended

the setup from [10] with three additional evaluation cri-

teria. Recall and specificity measure classification errors

associated with, respectively, instances annotated in the

ground truth as belonging or not belonging to a category

[34, p.342]. F1-measure is a weighted combination of pre-

cision and recall that, like mBRE , can be useful for less
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Group Feature Examples

Pitch First pitch, last pitch, major or minor, pitch class histogram, pitch variability, range
Melodic Amount of arpeggiation, direction of melodic motion, melodic intervals, repeated notes
Chords Chord type histogram, dominant seventh chords, variability of number of simultaneous pitches
Rhythm Initial time signature, metrical diversity, note density per quarter note, prevalence of dotted notes
Tempo Initial tempo, mean tempo, minimum and maximum note duration, note density and its variation
Instrument presence Note prevalences of pitched and unpitched instruments, pitched instruments present
Instrument prevalence Prevalences of individual instruments/instrument groups: acoustic guitar, string ensemble, etc.
Texture Average number of independent voices, parallel fifths and octaves, voice overlap

Table 1. Sample jSymbolic [24] features grouped into eight semantically meaningful groups.

balanced datasets [34, p.344]. The potential for differences

in measured importances based on recall, specificity, and

F1 is demonstrated in subfigures (d), (e), and (f).

We conducted 24,000 feature selection experiments in-

volving 20 genres and sub-genres × 3 cross-validation

folds × 8 feature groups × 5 new combinations of clas-

sifiers and measures × 10 statistical repetitions, with run-

times between about 2 and 50 hours per experiment.

4. DISCUSSION OF RESULTS

Tables 2 and 3 show multi-group feature importances for

all 20 classes, with each value indicating results aggregated

over three folds. In each row, the importance values across

the eight feature groups are shown with color: the group

with the highest importance (compared to the other feature

groups in the same row) is marked in deep red, and the

group with the lowest importance in deep blue. The four

“more important” feature groups are shown in shades of

red, and four “less important” groups in shades of blue.

The instrument presence feature group seems to be the

most important group in most of the experiments, with the

instrument prevalence group being the most important in a

few others. Features measuring pitch statistics are the most

important in five experiments (e.g., RnB prediction using

kNN and mBRE). Interestingly, instrument prevalence is

the least important group for almost all LMD-aligned gen-

res (even when instrument presence is the most important

group). Another intriguing result is that melodic features

seem to be particularly unimportant for the Classical SLAC

genre and its ClassBaroq and ClassRomant sub-genres.

As anticipated in Figure 1, these results reveal differ-

ences between importances when the classifier is varied.

Such difference may be particularly meaningful when a

cell’s color changes from red to blue or vice versa: for ex-

ample, chords are among the four more important groups

for predicting Country using RF and SVM, but are among

the less important groups when kNN is used. On the

other hand, for this same genre tempo-based features be-

come more important using kNN, not only relatively (the

cell goes from blue to red), but also with respect to mean

importance values (0.861 instead of 0.656 and 0.651, re-

spectively). This supports our preliminary suspicion that

the choice of classifier can have a strong impact, even for

“robust” features groups (e.g., symbolic characteristics ar-

guably describe musical properties in concise and clearly

understood ways compared to audio descriptors). How-

ever, this is certainly not always the case: for 480 combi-

nations of 20 classes, 8 feature groups, and 3 classifiers, in

62 cases (12.92%) the cell shade remains the same when

the classifier is changed for a fixed genre and feature group.

When the evaluation measures are varied for a fixed

classifier (note that here results were restricted to RF), the

changes seem to be slightly less impactful: for 640 related

combinations (20 classes, 8 feature groups, 4 measures),

the shade changed in only 53 cases (8.28%).

A randomly chosen decision will assign a feature group

to be either “more” or “less” relatively important with an

expected probability of 25% for three classifiers (1 case

with all more important values, 1 case with all less im-

portant values, and 6 remaining cases), and with 12.5%

for the four measures. Although this interpretation is not

perfect, as the change of a light red shade to a light blue

shade will indicate a switch between “more” and “less”

important, our main inference from the complete study is

that it is not enough to claim that some feature group is

“generally” more or less important for a particular musi-

cal category. Our results suggest that it is indeed necessary

to accompany feature group evaluations with specification

of the classifier and evaluation measure used. More gen-

eral claims about the suitability of particular feature groups

should be substantiated with broader experiments involv-

ing multiple classifiers and evaluation measures (and, per-

haps, classifier hyper-parameters).

5. CONCLUSIONS

This paper studied the stability of multi-group feature im-

portance when classifiers and evaluation measures are var-

ied. Eight symbolic feature groups were focused on within

a multi-modal classification context involving features ex-

tracted from six modalities (symbolic and five others).

Various combinations of features and classification ap-

proaches were used to predict genres and sub-genres for

two datasets with publicly available pre-extracted feature

values. The results show that, although in most cases the

relative importance of individual feature groups is not af-

fected by the choice of classification method or evaluation

measure, either or both of these do nonetheless have an

influence in a non-negligible number of cases. Multiple

parameters of the feature importance estimation chain can

impact determination of which musical properties are more

or less relevant for a particular musical category.

In the future, we plan to continue our experiments by
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Pitch Melodic Chords Rhythm Tempo Instr. Pres. Instr. Prev. Texture

C
o

u
n

tr
y

RF 0.796±0.05 0.675±0.07 0.798±0.02 0.820±0.04 0.656±0.03 0.945±0.01 0.614±0.02 0.700±0.03
kNN 0.924±0.08 0.704±0.07 0.832±0.03 0.865±0.04 0.861±0.06 0.952±0.03 0.645±0.02 0.779±0.03
SVM 0.756±0.03 0.688±0.04 0.785±0.04 0.730±0.03 0.651±0.05 0.861±0.03 0.633±0.01 0.665±0.02
RF-F1 0.610±0.09 0.439±0.03 0.576±0.10 0.654±0.05 0.413±0.11 0.889±0.01 0.285±0.12 0.381±0.08
RF-Rec 0.849±0.01 0.722±0.06 0.823±0.03 0.882±0.02 0.755±0.08 0.965±0.01 0.668±0.06 0.733±0.08
RF-Spec 0.760±0.03 0.678±0.06 0.768±0.04 0.785±0.04 0.618±0.06 0.927±0.02 0.604±0.09 0.674±0.03

E
le

ct
ro

n
ic

RF 0.825±0.04 0.774±0.02 0.815±0.01 0.871±0.02 0.754±0.07 0.951±0.02 0.697±0.03 0.746±0.02
kNN 0.867±0.07 0.748±0.11 0.861±0.06 0.914±0.06 0.954±0.01 0.964±0.02 0.700±0.04 0.708±0.05
SVM 0.824±0.04 0.773±0.01 0.770±0.05 0.836±0.05 0.768±0.00 0.916±0.01 0.683±0.03 0.758±0.03
RF-F1 0.695±0.05 0.583±0.05 0.681±0.02 0.771±0.02 0.542±0.08 0.934±0.01 0.450±0.01 0.553±0.02
RF-Rec 0.877±0.03 0.751±0.08 0.830±0.05 0.911±0.03 0.738±0.12 0.944±0.01 0.718±0.04 0.759±0.04
RF-Spec 0.757±0.09 0.738±0.05 0.748±0.02 0.835±0.02 0.742±0.04 0.956±0.01 0.660±0.03 0.733±0.01

P
o

p

RF 0.752±0.05 0.694±0.07 0.735±0.04 0.806±0.04 0.701±0.04 0.927±0.02 0.626±0.06 0.713±0.04
kNN 0.946±0.04 0.898±0.01 0.908±0.01 0.982±0.01 0.961±0.03 0.993±0.00 0.837±0.06 0.906±0.08
SVM 0.799±0.08 0.718±0.08 0.777±0.02 0.780±0.04 0.781±0.01 0.875±0.02 0.738±0.02 0.795±0.04
RF-F1 0.788±0.02 0.668±0.06 0.782±0.02 0.786±0.03 0.732±0.05 0.916±0.04 0.649±0.05 0.748±0.01
RF-Rec 0.803±0.10 0.729±0.04 0.769±0.11 0.870±0.07 0.722±0.13 0.959±0.02 0.643±0.03 0.745±0.09
RF-Spec 0.575±0.08 0.510±0.10 0.593±0.11 0.612±0.06 0.497±0.04 0.899±0.03 0.475±0.09 0.569±0.08

R
n

B

RF 0.808±0.04 0.689±0.10 0.807±0.05 0.844±0.03 0.716±0.02 0.958±0.02 0.621±0.09 0.697±0.07
kNN 0.921±0.06 0.601±0.08 0.778±0.00 0.892±0.06 0.818±0.20 0.920±0.06 0.402±0.02 0.743±0.07
SVM 0.764±0.07 0.699±0.03 0.780±0.04 0.788±0.04 0.735±0.01 0.889±0.03 0.663±0.10 0.691±0.07
RF-F1 0.711±0.06 0.418±0.16 0.603±0.03 0.661±0.03 0.448±0.17 0.892±0.00 0.306±0.07 0.417±0.03
RF-Rec 0.818±0.01 0.778±0.03 0.834±0.03 0.861±0.04 0.738±0.06 0.972±0.00 0.665±0.04 0.679±0.08
RF-Spec 0.829±0.06 0.683±0.02 0.738±0.02 0.832±0.02 0.704±0.04 0.930±0.01 0.601±0.07 0.637±0.02

R
o

ck

RF 0.726±0.06 0.602±0.03 0.713±0.07 0.748±0.03 0.655±0.03 0.917±0.02 0.598±0.02 0.657±0.05
kNN 0.949±0.05 0.856±0.03 0.919±0.02 0.961±0.04 0.983±0.01 0.984±0.01 0.813±0.05 0.948±0.02
SVM 0.768±0.03 0.756±0.01 0.766±0.02 0.780±0.03 0.710±0.04 0.886±0.04 0.625±0.03 0.686±0.04
RF-F1 0.767±0.03 0.641±0.08 0.742±0.01 0.773±0.05 0.679±0.08 0.928±0.02 0.608±0.03 0.663±0.04
RF-Rec 0.808±0.04 0.693±0.10 0.766±0.05 0.887±0.01 0.784±0.06 0.968±0.01 0.641±0.07 0.731±0.01
RF-Spec 0.612±0.08 0.446±0.04 0.586±0.08 0.603±0.05 0.482±0.07 0.859±0.06 0.509±0.12 0.508±0.05

B
lu

es

RF 0.923±0.03 0.742±0.07 0.858±0.06 0.902±0.03 0.759±0.05 0.975±0.00 0.769±0.10 0.723±0.13
kNN 0.743±0.06 0.650±0.20 0.659±0.11 0.841±0.04 0.725±0.14 0.945±0.00 0.576±0.04 0.624±0.07
SVM 0.792±0.02 0.557±0.14 0.665±0.20 0.795±0.08 0.584±0.04 0.916±0.01 0.621±0.13 0.627±0.03
RF-F1 0.806±0.09 0.551±0.20 0.656±0.11 0.801±0.07 0.534±0.04 0.953±0.02 0.645±0.03 0.525±0.12
RF-Rec 0.984±0.01 0.865±0.07 0.910±0.10 0.982±0.02 0.891±0.05 0.994±0.00 0.904±0.09 0.865±0.12
RF-Spec 0.943±0.03 0.826±0.10 0.954±0.02 0.899±0.01 0.894±0.01 0.984±0.00 0.898±0.05 0.857±0.06

C
la

ss
ic

al

RF 0.934±0.02 0.782±0.04 0.962±0.01 0.949±0.01 0.872±0.02 0.996±0.00 0.945±0.05 0.885±0.05
kNN 0.858±0.04 0.690±0.08 0.844±0.04 0.829±0.04 0.811±0.01 0.990±0.01 0.945±0.05 0.791±0.08
SVM 0.872±0.01 0.706±0.06 0.915±0.01 0.836±0.04 0.837±0.04 0.979±0.02 0.963±0.03 0.812±0.03
RF-F1 0.848±0.04 0.679±0.04 0.910±0.04 0.878±0.04 0.722±0.04 0.989±0.01 0.889±0.10 0.738±0.08
RF-Rec 0.987±0.01 0.925±0.07 0.989±0.02 0.982±0.02 0.952±0.03 1.000±0.00 1.000±0.00 0.983±0.03
RF-Spec 0.953±0.02 0.836±0.07 0.981±0.02 0.960±0.00 0.892±0.04 0.992±0.01 0.925±0.07 0.905±0.06

R
o

ck

RF 0.933±0.00 0.887±0.03 0.911±0.07 0.917±0.03 0.833±0.05 0.995±0.00 0.915±0.04 0.905±0.02
kNN 0.791±0.15 0.716±0.09 0.753±0.08 0.802±0.13 0.596±0.32 0.995±0.00 0.804±0.01 0.702±0.11
SVM 0.808±0.02 0.827±0.09 0.816±0.09 0.797±0.04 0.758±0.03 0.982±0.00 0.866±0.06 0.749±0.06
RF-F1 0.799±0.03 0.705±0.06 0.843±0.05 0.804±0.02 0.628±0.05 0.984±0.01 0.787±0.04 0.743±0.03
RF-Rec 0.960±0.03 0.971±0.03 0.982±0.03 0.969±0.03 0.910±0.07 1.000±0.00 1.000±0.00 0.974±0.02
RF-Spec 0.956±0.03 0.878±0.01 0.955±0.01 0.947±0.01 0.870±0.02 0.994±0.00 0.928±0.02 0.941±0.06

Ja
zz

RF 0.967±0.01 0.924±0.02 0.965±0.03 0.966±0.00 0.900±0.02 0.996±0.00 0.908±0.02 0.888±0.06
kNN 0.886±0.03 0.566±0.05 0.764±0.10 0.772±0.11 0.754±0.11 0.985±0.01 0.606±0.11 0.618±0.23
SVM 0.898±0.03 0.832±0.04 0.888±0.05 0.777±0.05 0.821±0.04 0.985±0.00 0.820±0.01 0.813±0.04
RF-F1 0.913±0.01 0.815±0.05 0.929±0.05 0.898±0.04 0.837±0.10 0.990±0.00 0.805±0.02 0.748±0.10
RF-Rec 0.972±0.02 0.966±0.04 0.991±0.01 0.988±0.02 0.933±0.04 0.998±0.00 0.981±0.03 0.927±0.01
RF-Spec 0.970±0.02 0.952±0.01 0.983±0.02 0.967±0.01 0.971±0.01 0.999±0.00 0.940±0.01 0.941±0.01

R
ap

RF 0.967±0.01 0.920±0.02 0.930±0.05 0.928±0.02 0.861±0.02 0.996±0.00 0.849±0.03 0.912±0.04
kNN 0.955±0.01 0.731±0.10 0.839±0.04 0.828±0.04 0.797±0.07 0.979±0.00 0.711±0.09 0.555±0.06
SVM 0.880±0.04 0.705±0.07 0.887±0.06 0.793±0.01 0.788±0.04 0.955±0.01 0.798±0.07 0.823±0.07
RF-F1 0.918±0.03 0.796±0.01 0.818±0.10 0.847±0.07 0.748±0.06 0.992±0.01 0.762±0.03 0.737±0.21
RF-Rec 0.990±0.02 0.936±0.01 0.988±0.02 0.959±0.06 0.936±0.03 0.999±0.00 0.960±0.04 0.969±0.04
RF-Spec 0.975±0.02 0.945±0.01 0.939±0.06 0.950±0.03 0.898±0.03 0.999±0.00 0.938±0.02 0.910±0.05

Table 2. Multi-group symbolic feature importances for five LMD-aligned genres (top half of the table) and five SLAC

parent genres (bottom half of the table), aggregated over 3 folds. F1: F1-measure; Rec: recall; Spec: specificity. The first

three rows of each genre block were evaluated with balanced relative error mBRE .

measuring the impact of other feature types and modali-

ties. We will also further examine the effects of varying

other parameters in the experimental setup, such as classi-

fier hyper-parameters, and also systematically consider as-
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Pitch Melodic Chords Rhythm Tempo Instr. Pres. Instr. Prev. Texture

B
lu

es
M

o
d

er
n RF 0.922±0.05 0.711±0.07 0.775±0.04 0.701±0.18 0.732±0.19 0.965±0.04 0.826±0.05 0.837±0.14

kNN 0.762±0.07 0.772±0.13 0.631±0.08 0.698±0.03 0.773±0.08 0.966±0.04 0.536±0.07 0.774±0.16
SVM 0.865±0.03 0.602±0.02 0.660±0.16 0.758±0.12 0.641±0.13 0.946±0.03 0.684±0.17 0.614±0.07
RF-F1 0.916±0.07 0.488±0.39 0.603±0.40 0.704±0.33 0.511±0.29 0.929±0.09 0.510±0.27 0.711±0.22
RF-Rec 0.769±0.20 0.629±0.17 0.640±0.07 0.498±0.30 0.895±0.10 0.991±0.02 0.885±0.20 0.794±0.07
RF-Spec 0.984±0.01 0.966±0.02 0.970±0.03 0.982±0.02 0.963±0.01 0.997±0.00 0.928±0.02 0.962±0.04

B
lu

es
T

ra
d

it

RF 0.836±0.10 0.664±0.10 0.909±0.02 0.949±0.03 0.778±0.18 0.971±0.01 0.844±0.09 0.673±0.14
kNN 0.798±0.12 0.619±0.14 0.755±0.09 0.851±0.07 0.768±0.10 0.935±0.04 0.805±0.18 0.537±0.10
SVM 0.844±0.05 0.672±0.14 0.618±0.15 0.773±0.14 0.748±0.10 0.964±0.05 0.598±0.13 0.608±0.11
RF-F1 0.852±0.04 0.595±0.23 0.645±0.13 0.852±0.04 0.629±0.24 0.960±0.04 0.694±0.19 0.505±0.16
RF-Rec 0.872±0.10 0.747±0.17 0.943±0.10 0.905±0.14 0.944±0.10 0.999±0.00 0.624±0.45 0.782±0.38
RF-Spec 0.993±0.01 0.911±0.05 0.916±0.05 0.971±0.03 0.918±0.10 0.991±0.01 0.922±0.09 0.855±0.14

C
la

ss
B

ar
o

q

RF 0.914±0.07 0.747±0.26 0.921±0.06 0.804±0.11 0.815±0.14 0.997±0.00 0.816±0.03 0.860±0.14
kNN 0.821±0.06 0.486±0.40 0.754±0.14 0.654±0.03 0.572±0.18 0.985±0.01 0.964±0.04 0.421±0.12
SVM 0.901±0.02 0.595±0.04 0.856±0.05 0.774±0.06 0.625±0.04 0.985±0.01 0.909±0.08 0.740±0.10
RF-F1 0.851±0.21 0.520±0.14 0.701±0.30 0.688±0.21 0.593±0.08 0.987±0.02 0.728±0.18 0.539±0.17
RF-Rec 0.995±0.01 0.861±0.13 0.971±0.05 0.875±0.22 0.778±0.29 1.000±0.00 0.883±0.11 0.976±0.02
RF-Spec 0.970±0.02 0.922±0.08 0.986±0.01 0.988±0.01 0.954±0.04 1.000±0.00 1.000±0.00 0.934±0.07

C
la

ss
R

o
m

an
t RF 0.831±0.12 0.710±0.14 0.940±0.04 0.893±0.07 0.781±0.12 1.000±0.00 0.895±0.14 0.670±0.09

kNN 0.888±0.09 0.670±0.25 0.789±0.12 0.947±0.05 0.817±0.14 0.983±0.01 0.804±0.13 0.722±0.23
SVM 0.817±0.07 0.723±0.18 0.952±0.04 0.860±0.05 0.738±0.04 0.983±0.02 0.971±0.02 0.746±0.11
RF-F1 0.744±0.04 0.510±0.23 0.864±0.09 0.855±0.03 0.579±0.13 1.000±0.00 0.731±0.10 0.621±0.09
RF-Rec 0.792±0.14 0.724±0.24 0.974±0.02 0.848±0.16 0.480±0.25 0.999±0.00 1.000±0.00 0.806±0.09
RF-Spec 0.979±0.02 0.942±0.05 0.999±0.00 0.993±0.01 0.980±0.01 0.999±0.00 0.986±0.01 0.971±0.02

Ja
zz

B
o

p

RF 0.957±0.01 0.767±0.15 0.855±0.04 0.824±0.08 0.863±0.03 0.966±0.03 0.818±0.10 0.865±0.03
kNN 0.761±0.11 0.604±0.07 0.838±0.04 0.751±0.02 0.711±0.08 0.994±0.00 0.713±0.16 0.572±0.06
SVM 0.844±0.01 0.720±0.06 0.840±0.02 0.784±0.06 0.816±0.06 0.973±0.03 0.713±0.12 0.759±0.05
RF-F1 0.788±0.03 0.609±0.35 0.722±0.16 0.811±0.03 0.681±0.03 0.962±0.05 0.571±0.15 0.568±0.09
RF-Rec 0.949±0.04 0.653±0.33 0.774±0.06 0.904±0.11 0.965±0.03 0.954±0.08 1.000±0.00 0.839±0.18
RF-Spec 0.994±0.01 0.985±0.02 0.995±0.01 0.994±0.01 0.991±0.01 1.000±0.00 0.960±0.05 0.930±0.05

Ja
zz

S
w

in
g

RF 0.957±0.01 0.863±0.07 0.911±0.06 0.946±0.05 0.932±0.04 0.947±0.04 0.876±0.05 0.861±0.08
kNN 0.939±0.07 0.840±0.10 0.887±0.08 0.825±0.12 0.707±0.14 0.983±0.01 0.738±0.05 0.749±0.22
SVM 0.870±0.06 0.823±0.05 0.903±0.07 0.840±0.07 0.807±0.06 0.946±0.03 0.822±0.07 0.800±0.10
RF-F1 0.868±0.07 0.658±0.05 0.788±0.10 0.888±0.03 0.604±0.16 0.943±0.03 0.759±0.16 0.650±0.08
RF-Rec 0.988±0.02 0.942±0.06 0.840±0.16 0.943±0.08 0.901±0.12 0.962±0.03 0.867±0.13 0.828±0.26
RF-Spec 0.994±0.01 0.966±0.01 0.978±0.02 0.996±0.01 0.964±0.02 0.999±0.00 0.978±0.00 0.979±0.02

R
ap

H
ar

d
co

re

RF 0.845±0.00 0.790±0.07 0.898±0.06 0.880±0.03 0.688±0.18 0.965±0.01 0.693±0.11 0.883±0.11
kNN 0.816±0.09 0.685±0.14 0.801±0.13 0.725±0.07 0.661±0.06 0.969±0.03 0.677±0.24 0.686±0.02
SVM 0.768±0.10 0.779±0.05 0.820±0.13 0.718±0.18 0.712±0.12 0.913±0.07 0.719±0.10 0.813±0.06
RF-F1 0.842±0.14 0.727±0.05 0.649±0.23 0.949±0.05 0.838±0.09 0.978±0.01 0.576±0.39 0.842±0.16
RF-Rec 0.660±0.27 0.700±0.24 0.981±0.02 0.985±0.03 0.888±0.07 0.970±0.01 0.829±0.15 0.954±0.05
RF-Spec 0.993±0.01 0.959±0.01 0.985±0.01 0.987±0.02 0.964±0.03 1.000±0.00 0.972±0.02 0.989±0.01

R
ap

P
o

p

RF 0.851±0.08 0.637±0.03 0.926±0.04 0.883±0.06 0.787±0.19 0.953±0.01 0.644±0.16 0.658±0.17
kNN 0.907±0.09 0.629±0.11 0.790±0.12 0.736±0.04 0.732±0.12 0.987±0.01 0.643±0.17 0.668±0.08
SVM 0.854±0.07 0.776±0.08 0.863±0.09 0.682±0.10 0.625±0.32 0.895±0.06 0.511±0.17 0.756±0.09
RF-F1 0.835±0.12 0.626±0.38 0.862±0.11 0.755±0.22 0.637±0.32 0.971±0.03 0.710±0.25 0.582±0.21
RF-Rec 0.972±0.05 0.761±0.18 0.910±0.16 0.529±0.09 0.603±0.41 0.957±0.07 0.734±0.06 0.681±0.48
RF-Spec 0.982±0.01 0.965±0.04 0.961±0.02 0.961±0.04 0.960±0.02 1.000±0.00 0.935±0.04 0.944±0.03

R
o

ck
A

lt
er

n

RF 0.787±0.06 0.768±0.10 0.815±0.07 0.891±0.02 0.824±0.08 0.971±0.01 0.728±0.09 0.681±0.05
kNN 0.658±0.14 0.678±0.07 0.639±0.10 0.830±0.14 0.751±0.08 0.952±0.05 0.423±0.24 0.593±0.19
SVM 0.670±0.12 0.679±0.13 0.797±0.08 0.804±0.14 0.751±0.11 0.903±0.07 0.695±0.10 0.592±0.04
RF-F1 0.535±0.20 0.458±0.05 0.764±0.14 0.740±0.05 0.597±0.13 0.911±0.07 0.442±0.15 0.498±0.24
RF-Rec 0.578±0.19 0.794±0.19 0.855±0.04 0.884±0.03 0.847±0.22 0.942±0.04 0.698±0.08 0.765±0.10
RF-Spec 0.977±0.03 0.918±0.06 0.987±0.02 0.980±0.03 0.907±0.11 1.000±0.00 0.963±0.04 0.934±0.01

R
o

ck
M

et
al

RF 0.914±0.03 0.840±0.06 0.873±0.09 0.847±0.11 0.840±0.04 0.988±0.00 0.950±0.03 0.840±0.09
kNN 0.986±0.02 0.797±0.12 0.797±0.18 0.835±0.04 0.720±0.30 0.985±0.01 0.795±0.17 0.601±0.17
SVM 0.758±0.25 0.788±0.05 0.915±0.04 0.826±0.03 0.750±0.08 0.981±0.02 0.946±0.04 0.810±0.03
RF-F1 0.943±0.04 0.605±0.14 0.742±0.15 0.739±0.18 0.630±0.15 0.985±0.01 0.802±0.04 0.775±0.04
RF-Rec 0.965±0.03 0.703±0.23 0.795±0.26 0.757±0.16 0.823±0.05 0.991±0.01 1.000±0.00 0.807±0.16
RF-Spec 0.995±0.01 0.972±0.02 0.985±0.00 0.992±0.01 0.965±0.03 1.000±0.00 0.992±0.01 0.990±0.01

Table 3. Multi-group symbolic feature importances for ten SLAC sub-genres, aggregated over 3 folds. F1: F1-measure;

Rec: recall; Spec: specificity. The first three rows of each sub-genre block were evaluated with balanced relative error

mBRE .

pects like extraction times, statistical properties, and suit-

ability for data augmentation. We will also run further tri-

als in order to be able to apply more developed statistical

significance testing.
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