SIMSSA DB: Go Jump in the (Data) Lake

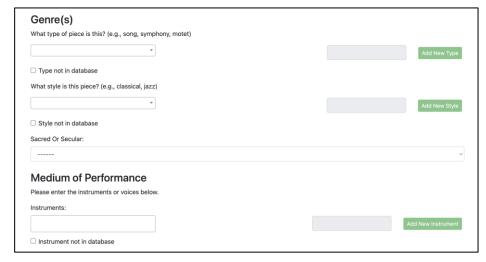
Cory McKay, Marianopolis College, Canada

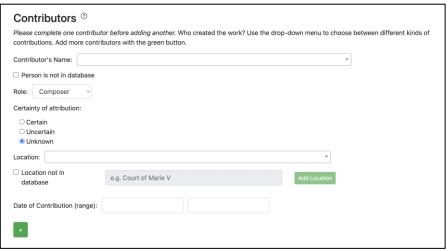
Rebecca Mizrahi, McGill University, Canada

Topics

- Overview and goals of the SIMSSA DB
- Some highlights
 - Metadata
 - Auto-extracted, searchable features
 - Abstract works, sections and parts
 - Sources and provenance
- SIMSSA DB / LinkedMusic integration
- Live demo by Rebecca Mizrahi

What is the SIMSSA DB?


- Collaborative database prototype infrastructure for holding and accessing symbolic music files, associated auto-extracted contentbased feature values, and musicologically-focused metadata
 - With a web Django-based browser interface
- Populated by:
 - Now: Samples from research datasets we have constructed
 - Medium-term: Import existing open symbolic datasets that musicologists, libraries and others have already constructed
 - We can import such datasets, or users can contribute them directly
 - Long-term: Auto-population via (verified) OMR
- Focused (for now) on early music


An infrastructure, not a corpus

- The SIMSSA DB is not intended just as a repository of music we have transcribed ourselves
 - Although are seeding it with datasets we have made, such as JLSDD (Cumming et al. 2018), Florence 164 (Cumming & McKay 2018), etc.
- Rather, it is a general unified infrastructure to which it is hoped other scholars can contribute and share symbolic music files (and more) that they have used in their own work

SIMSSA DB prototype contribution form

Data quality

- Focus on high-quality data
- Quality of individual documents is especially important in early music:
 - Individual details very important to domain experts
 - e.g. a single cadence or even a single note
 - Few extant sources, so limited training/testing data will ever be available, and there is limited room for statistical noise
- Problem: Ensuring high-quality structured data requires expertise and effort on the part of contributors and validators
 - One of the reasons the SIMSSA DB is designed primarily for use by musicologists and, to a lesser extent, MIR researchers
- This tension between quantity vs. quality is not yet fully resolved; we may choose to find a different balance between them in the future
 - In terms of both the amount of data and in the amount of structuring and annotation

Core focus: Symbolic music files

- Research-grade symbolic music files are surprisingly difficult to access
- Most existing scholarly music repositories focus on references to physical sources, to images or audio recordings
 - Many repositories do not reference symbolic music files at all
 - Most of those that do reference symbolic music typically:
 - Treat them as an afterthought, rather than as valuable digital objects worthy of careful consideration
 - Neglect essential issues like provenance and documentation of essential editorial and encoding decisions that are fundamental to conducting proper computational musicological research
 - Limit the range of symbolic formats available, contrary to the needs of researchers who in practice will need music available in a range of different formats (and who know that naïve automatic translation can bias or otherwise compromise research results)

Metadata and feature searches

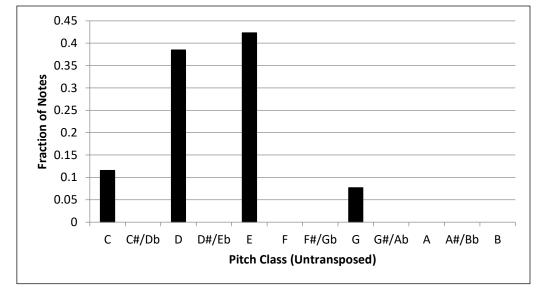
- SIMSSA DB may be searched using traditional metadata queries:
 - Free-text search
 - Faceted metadata filters, such as:
 - Contributor
 - Composer, arranger, author of text, transcriber, etc.
 - Instruments / voices
 - Sacred / secular
 - Genre / type of work
 - e.g. madrigal, motet, etc.
 - Etc.
- SIMSSA DB also permits content-based searches based on features

Wait, what is a "feature?"

- Information that measures a characteristic of a segment of music in a simple, consistent and precisely-defined way
- Represented using numbers
 - Can be a single value, or can be a set of related values (e.g., a vector of histogram bin values)
- Provides a summary description of the characteristic being measured
 - Usually provides a macro rather than local view
- Usually extracted from pieces or distinct sections (e.g., mass movements) in their entirety
 - But can also be extracted from smaller segments of music

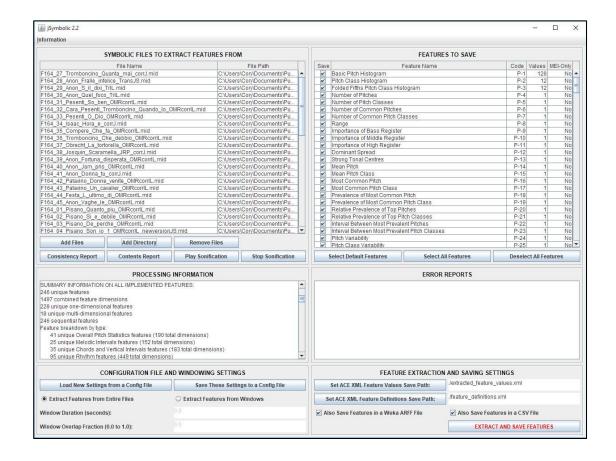
Example: A simple feature

- Range: Difference in semitones between the lowest and highest pitches present
 - A 1-dimensional feature

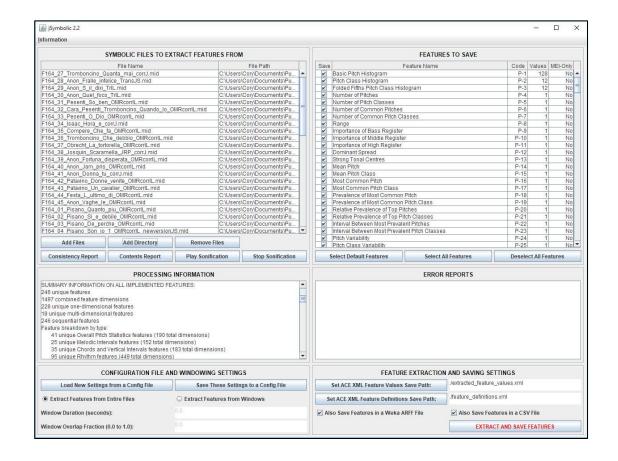

- Value of this feature for this music: 7
 - G C = 7 semitones

Example: A histogram feature

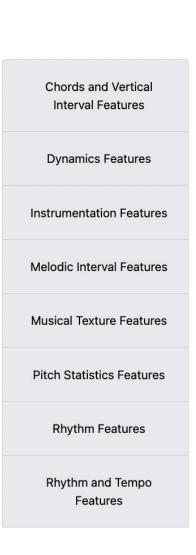
 Pitch Class Histogram: Consists of 12 values, each representing the fraction of all notes belonging to an enharmonic pitch class



- Histogram graph on right shows feature values
- Pitch class counts:
 - C: 3, D: 10, E: 11, G: 2
- Most common note is E:
 - 11/26 notes
 - Corresponds to a feature value of 0.423 for E


How might one calculate features?

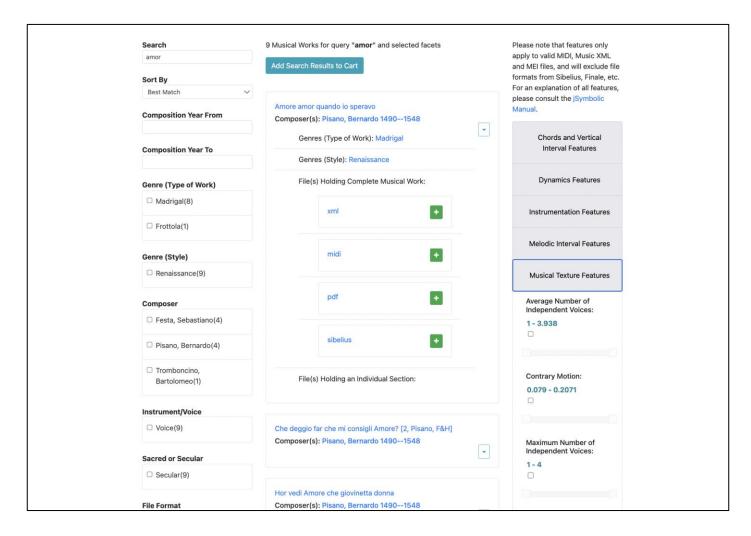
- The jSymbolic research software (McKay et al. 2018) can be used to automatically extract features from symbolic digital scores
 - Open source
 - Applicable to diverse musics
- Version 2.2 extracts 246 unique features
 - 1497 separate feature values, since many features a multi-dimensional (e.g. histogram vectors)
- The upcoming Version 3 extracts 533 unique features
 - 2040 feature values, including n-gram features


jSymbolic 2.2's feature types

- Pitch statistics
 - e.g. Range
- Melody / horizontal intervals
 - e.g. Most Common Melodic Interval
- Chords / vertical intervals
 - e.g. Vertical Minor Third Prevalence
- Texture
 - e.g. Parallel Motion
- Rhythm
 - e.g. Note Density per Quarter Note
- Instrumentation
 - e.g. Note Prevalence of Unpitched Instruments
- Dynamics
 - e.g. Variation of Dynamics

SIMSSA DB and features (1/2)

- jSymbolic 2.2 has been integrated into the SIMSSA DB
 - Whenever an extractable file is uploaded to the SIMSSA DB, features are automatically pre-extracted, stored and indexed
- Users can specify feature-range queries via a slider for each feature they are interested in



SIMSSA DB and features (2/2)

 Can also download complete feature sets directly and use them as input to statistical analysis and machine learning tools (or analyze them manually)

- Feature searches can also be combined with metadata searches
 - e.g. retrieve all sacred pieces attributed to Josquin that contain parallel fifths

Sample query combining metadata and features

Abstract works, sections and parts (1/2)

- The SIMSSA DB maintains a conceptual separation between abstract musical works and particular instantiations of them (as expressed by particular symbolic files, for example)
- Multiple versions of the same abstract work can exist, and these should be both associated with and differentiated from one another
 - e.g. different editions, arrangements, etc. of a work
 - e.g. different digital symbolic encodings of the same manuscript
 - Could be in different formats (e.g., MIDI vs. MEI vs. MusicXML vs. kern vs. mscx)
 - Two versions could also use the same format, but be encoded differently (e.g., approach to *musica ficta*, base rhythmic note values, etc.)

Abstract works, sections and parts (2/2)

- The SIMSSA DB makes it possible to divide music into abstract Works,
 Sections and Parts
 - Symbolic files sometimes contain whole pieces, and sometimes only subsets of pieces
- The makes it possible to keep track of complex abstract relationships
 - e.g., a single movement of a mass might be reused in another mass
 - e.g., an orchestral score and a keyboard reduction of it have different parts, but they are also different versions of the same abstract work

Sources and provenance

- Keeping a record of provenance is musicologically essential
- Each digital object in the SIMSSA DB (e.g., a symbolic music file) is therefore linked to a Source
 - A "source" is a reference (ideally a URI) to a physical or digital document from which a digital object in the SIMSSA DB (e.g., a Music XML file) was derived
- Each source can in turn be linked to its parent source(s) through (eventually) chains of provenance
 - e.g., an MEI file transcribed from a printed score, derived from a hand-written copyist's manuscript, derived from a hand-written original manuscript in the composer's hand

Other aspects of the SIMSSA DB

- Authority control
- Links to corpora
- Links to specific experimental studies
- Links to other types of data (text, audio, images, etc.)

"Music researchers jumping into a lake" (according to Fotor and Deep AI)

Basic metadata fields we would like LinkedMusic to make searchable and accessible

- Basic metadata fields
 - Title of work (including variants)
 - Title of section (including variants)
 - e.g., of a mass movement
 - Composer, author of text, arranger, transcriber, performer, improviser
 - With attribution certainty
 - Instrument / voice
 - Sacred or secular
 - Genre (Type of Work)
 - e.g., Motet
 - Genre (Style)
 - e.g., Renaissance
 - Dates
 - Precise or ranges
 - Locations
 - Source of item
 - File format
 - MusicXML, MEI, MIDI, kern, Sibelius, PDF, etc.

Trickier things we would like LinkedMusic to make searchable and accessible

- Relationships and structures between entities
 - Work <-> Section <-> Part
 - Chains of provenance
 - Corpora found in
 - Experimental studies used in
 - Connections between related:
 - Symbolic music files
 - Audio files
 - Image files
 - Text files
- Feature values

The SIMSSA DB, Cantus DB, The Session and MusicBrainz are serving as early "music research test subjects"

Some tricky issues to think about

- How will fields with no easy Wikidata property mappings be made accessible?
 - e.g., jSymbolic3's 2040 feature values
 - Having each repository provide formally structured URI documentation for each of potentially hundreds or thousands of fields would be onerous, but not intractable
 - Alternatives, like basic unstructured text search for such situations?
- Musicologists have repeatedly stressed the essential value of having the option to enter free text values (when they need to)
 - As opposed to being exclusively limited to options suggested by authority controls, that have existing URIs associated with them
 - e.g. titles or names not recognized by authority controls, or qualifications about dates
 - Is auto-creating new corresponding URIs in such situations a good option?
 - Probably not ideal from the perspective of reconciliation
- Similar issues likely relevant to other LinkedMusic repositories too

Credit to the deserving

- I (Cory) designed the original data model and provided high-level guidance to the project, along with Julie Cumming and Emily Hopkins
 - Andrew Hankinson helped get us started with insights from DIAMM and elsewhere
 - Informal discussions with a range of musicologists have also been immensely valuable in guiding priorities
- Ichiro Fujinaga generously hosted SIMSSA DB development in his lab
 - Gustavo Polins Pedro and Yaolong Ju implemented the first version
 - Rebecca Mizrahi recently resurrected the DB implemented substantial improvements
 - Hong Van Pham has worked on deployment and towards LinkedMusic integration

Live demo by Rebecca Mizrahi

- Staging version of SIMSSA DB:
 - db.staging.simssa.ca
 - May only be accessed via the McGill network
 - New contribution submission is currently enabled for data security
 - Please try it while you're here
- Production version of SIMSSA DB:
 - db.simssa.ca
 - Publicly accessible
 - New contribution submission is currently disabled for data security

Thanks for your attention!

cory.mckay@mail.mcgill.ca rebecca.mizrahi@mail.mcgill.ca van.pham2@mcgill.ca

Fonds de recherche Société et culture Québec * *

